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Flickering gives early warning signals of a critical
transition to a eutrophic lake state
Rong Wang1,2, John A. Dearing1, Peter G. Langdon1, Enlou Zhang2, Xiangdong Yang2, Vasilis Dakos3,4 & Marten Scheffer3

There is a recognized need to anticipate tipping points, or critical
transitions, in social–ecological systems1,2. Studies of mathemat-
ical3–5 and experimental6–9 systems have shown that systems may
‘wobble’ before a critical transition. Such early warning signals10

may be due to the phenomenon of critical slowing down, which
causes a system to recover slowly from small impacts, or to a
flickering phenomenon, which causes a system to switch back
and forth between alternative states in response to relatively large
impacts. Such signals for transitions in social–ecological systems
have rarely been observed11, not the least because high-resolution
time series are normally required. Here we combine empirical data
from a lake-catchment system with a mathematical model and
show that flickering can be detected from sparse data. We show
how rising variance coupled to decreasing autocorrelation and
skewness started 10–30 years before the transition to eutrophic
lake conditions in both the empirical records and the model out-
put, a finding that is consistent with flickering rather than critical
slowing down4,12. Our results suggest that if environmental
regimes are sufficiently affected by large external impacts that
flickering is induced, then early warning signals of transitions in
modern social–ecological systems may be stronger, and hence
easier to identify, than previously thought.

The concern that global social–ecological systems are adversely affec-
ted by the cumulative impact of multiple interacting drivers13 has
spurred efforts to anticipate abrupt, nonlinear changes1,2,14–16. As a result,
there are increasing efforts to use system dynamical theory to identify
early warning signals of critical transitions10,11. For example, close to
tipping points, the recovery rate from small perturbations becomes very
slow10. In the natural fluctuations of a system, such critical slowing down
may be signalled by rising levels of variance and autocorrelation3,4,10,17.
In addition, deformation of the basin of attraction before a critical trans-
ition may be detected from increasing skewness5. Such theoretical
predictions are supported by studies of past climate change15,18 and
manipulated lake ecosystems6 and by laboratory experiments with
zooplankton7, phytoplankton8 and fungi9. But other studies of palaeo-
climate records19 and ecological models20 are less conclusive. One pro-
blem is that, typically, long time series of high-resolution data are needed.
In addition, in stochastic systems with high levels of noise, shifts between
alternative basins of attraction may occur far from the classical tipping
points at which critical slowing down can be observed. Such situations
can give rise to another phenomenon known as flickering, in which the
system starts jumping back and forth between alternative basins of
attraction10,11,21. Here we use a multi-decadal time series from a lake
together with model simulations and show that flickering is reflected
in relatively low-resolution time series as bimodality and increasing
variance, coupled to a decrease in autocorrelation and skewness.

We reconstruct and analyse historical changes in the Erhai Lake-
catchment system in Yunnan, China (Supplementary Fig. 1). Monitoring
data and official socio-economic statistics provide historical trends for
lake water quality and lake water level, population density, land use

and climate from the 1950s to 2009 (Supplementary Information).
Longer records of the lake ecosystem are based on laboratory analyses
of three lake sediment cores, each of which contains the contemporary
mud–water interface. Microscopic counts of fossil diatoms (siliceous
algae) and chironomid (non-biting midge) head capsules give multi-
decadal proxy records of the aquatic ecosystem to ,125 years ago, and
in one core to ,750 years ago (Supplementary Information). Other
sediment analyses give information about sediment provenance,
organic matter and water chemistry. The timescales for the cores were
obtained from a combination of 14C, 210Pb and 137Cs radionuclide
determinations (Supplementary Information). We also use a simple
model22 (Supplementary Information) to simulate phosphorus
dynamics in a lake approaching eutrophication under a regime of
strong external perturbations. The model is defined as follows:

dP~ a{sPzr
Pn

Pnz1n

� �
dtzsPdW ð1Þ

where P is phosphorus concentration, a is phosphorus input rate (the
control parameter), r is the maximum recycling rate (r 5 1), s is the
phosphorus loss rate (s 5 1), n is the strength of the recycling response
to phosphorus concentrations (n 5 8) and t is time. White noise is
added through a Wiener process dW with scaling factor s (s 5 0.25).
We increased the phosphorus input rate, a, linearly in 2,000 time steps
from 0.1 to 0.7, crossing the threshold at which the transition to
eutrophication occurs at time step 1,848, when a 5 0.6619.

Microfossil and geochemical records (Fig. 1a–d) from dated lake
sediment cores (Supplementary Figs 2 and 3) were used to reconstruct
the trends in the state of lake diatom communities and water quality
back to the 1880s, and these records seem to reproduce the abrupt
change in algal states observed in recent monitored data, between
2001 and 2005 (Supplementary Fig. 4). From the combined monitored
and lake sediment data, it seems that a profound transition in the algal
community occurred around 2001. Historical records (Fig. 1e, f) of
exogenous drivers (from 1950) strongly suggest that altered trends in
algal community composition, starting in the 1960s, track with nutrient
loading of the lake driven by agricultural intensification (Supplementary
Information). Superimposed on nutrient loading, which is a ‘slow’ dri-
ving variable on a multi-decadal timescale, are the influences of ‘fast’
driving variables on annual and sub-annual timescales: these fast vari-
ables are short-lived changes in water volumes as a result of lake water-
level regulation and low rainfall between 1980 and 2000, which together
triggered temporary eutrophication events (Supplementary Informa-
tion). We surmise that as aquatic productivity grew in response to
increased nutrient concentrations (Fig. 1c, d), positive-feedback mecha-
nisms (Supplementary Fig. 5) gradually strengthened the eutrophication
process: oxygen depletion led to hypolimnetic anoxia (Fig. 1b) and to the
recycling of biologically available phosphorus22 from the upper sediments
(Fig. 1c). Despite a return to higher water levels in 2004–05 (Fig. 1e), the
strengthened positive feedback (Supplementary Information) prevented
recovery of the diatom communities as late as 2009.
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Several observations indicate11 that the transition in Erhai Lake in
,2001 corresponds to the classic development of a bistable system.
First, the shift in the state of the diatom communities (Fig. 1a) and the
abrupt changes in other water quality indicators (Supplementary
Fig. 4) are consistent with the behaviour of a lake that is shifting to
an alternative, and stable, eutrophic state. Second, the observed multi-
decadal increases in nutrient loading as a result of rising crop yields,
together with the compounding effects of lake water level and climate
variability (Fig. 1e, f), are consistent with the action of a ‘slow’, non-
stationary driving variable that continues through the shift in diatom
states. Third, the relatively low variability of diatom data over the past
,750 years suggests that system bistability is a recent phenomenon
(Supplementary Fig. 6), and recent multi-decadal data show evidence
for increasing bimodality (Fig. 2a). Fourth, statistical analyses and
autoregression modelling allow rejection of null hypotheses for the
absence of a critical transition and for the shift in diatom states caused
by a shift in non-stationary driving variables (Fig. 2b, c and Sup-
plementary Tables 1 and 2). Last, a phase-space plot for the diatom
state response to varying concentrations of total dissolved phosphorus
shows evidence of alternative states and hysteresis (Fig. 2d).

Detrended records of diatom composition and diversity indices
(Fig. 3a, b) show a significant and continuously rising variance from
,1980 (Fig. 3c), whereas skewness (Fig. 3d) and autocorrelation
(Fig. 3e) decline. Sensitivity tests (Supplementary Information and
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Figure 1 | Lake-sediment-based aquatic-system response variables and
historical records of environmental drivers during the period 1883–2009.
a, One-dimensional gradients of sediment diatom composition and diversity
based on detrended correspondence analysis (DCA axis 1 scores) (blue) and
calculated Hill’s diversity index N2 (HDI) (orange) of non-interpolated
sediment data. The DCA trend shows declining values from about 1965, with
two sharp downward changes in about 1982 and about 2001 (dashed vertical
line). The HDI data describe a more variable curve with a slight upward trend
since the 1980s but an abrupt drop in about 2001. b, The abundance of
chironomid (non-biting midge) larval head capsules in the sediment (number
g21 sediment) reflects the diverse lake conditions, and the very low abundance
after 2001 indicates increasing anoxia in the hypolimnion27. c, The abundance
of calcium in the sediment (mg g21 sediment) (black) rose in 1977 and after
2001, as a result of the biologically induced precipitation of CaCO3 (calcite),
which was linked to high rates of productivity by photosynthetic algae.
Increased rates of photosynthesis decreased the level of dissolved CO2, raised
the pH and produced local over-saturation of CaCO3. The total sediment
phosphorus abundance (P mg g21 sediment) (yellow) gradually rose from the
1960s; however, compared with calcium, there was only a small rise after 2003,
suggesting partial depletion of sediment phosphorus as a result of anoxic
recycling. d, Sediment total organic carbon (TC) (% of total sediment mass)
(blue) and total nitrogen (TN) (% of total sediment mass) (green) gradually rose
from the 1960s and abruptly rose after 2001, indicating rising levels of
sedimenting organic matter as a result of increased aquatic productivity.
e, Historical records of the annual crop yield in the region (Dàlı̌ Bai, an
autonomous prefecture of Yunnan) from a constant land area (blue) imply that
agricultural intensification occurred from the 1960s and peaked initially in
2000. Historical records of the lowest annual lake water level (in metres above
sea level (m.a.s.l.); pink), showing the combined effects of sluice building on
outflow regulation for hydroelectric power and dry years after 1975. It
should be noted that relatively high water levels were maintained in 2004
and 2005, after the trophic shift. f, Mean annual rainfall (green) and
temperature (purple).
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Figure 2 | Evidence for bistability, critical transition, alternative states and
hysteresis in the DCA time series. a, Probability density functions (Gaussian
kernel density estimation) for the periods 1941–70 (black) and 1971–2000 (red)
show increasing bimodality, suggesting the development of a bistable system up
to 2001. Short vertical bars show the density of individual points. b, A sequential
analysis of DCA scores (circles) with mean values (horizontal line) for the period
1980–2010, using Student’s t-test, shows a significant (P # 0.01) break point in
about 2001. c, Predicted values (circles) in the period 2001–10 (vertical red bars
represent the probability levels P # 0.05) using the optimum autoregressive
integrated moving average (ARIMA) model (Supplementary Table 1) derived
from the time series 1883–2000. The clear divergence between the observed
values (solid black line) and the predicted values (circles) shows that the proposed
transition at about 2001 cannot be explained in terms of the observed data. d, A
phase-space plot of the dissolved nutrient driving variable (total phosphorus, TP)
versus the diatom state response variable (DCA). The plot describes two linear
clusters of points, 1992–2001 (upper black dashed line) and 2001–09 (lower black
dashed line), suggesting two alternative diatom states for all TP values in the range
0.02–0.03 mg l21, which is equivalent to ,50% of the whole TP scale: this finding
is strong evidence for alternative states and hysteresis.
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Supplementary Fig. 7) indicate that these findings are robust. The
declines in skewness and autocorrelation suggest that the increased
variance cannot be explained by critical slowing down of a system close
to equilibrium19. With strong evidence for exogenous drivers, we can
reject an alternative explanation for increasing variance in terms of
internal noise generated solely by endogenic changes19. Thus, the
rising variance is most likely to represent the interaction of multiple
exogenous drivers and the crossing of internal thresholds that magnify
system responses and induce flickering between alternative attrac-
tors12,17. In large data sets, flickering can be detected by distinct pro-
bability distributions of system states given by potential analysis23,24.
Our data are too sparse to carry out a full potential analysis, but evidence
of flickering at Erhai Lake exists in the form of observed eutrophication
events and algal blooms between 1980 and 2000 (Supplementary
Information) and in the increased variance in the diatom indices
(Fig. 3c). Flickering is also supported by the apparent bimodality17 in
the frequency distribution of states (Fig. 2a). Overall, the system
dynamics changed on a multi-decadal timescale, and the critical
transition, in about 2001, was presaged by signals of rising variance
caused by flickering that started 10–30 years previously (Fig. 3c and
Supplementary Fig. 7i), a similar timescale to that found in mathemat-
ical models of lake regime shifts4,17.

We checked whether the observed changes in autocorrelation, vari-
ance and skewness are consistent with flickering over a bistable region,
by comparing the behaviour of these metrics to metrics estimated in

simulated time series from a simple model22 that describes the trans-
ition of a lake to eutrophic conditions (Supplementary Information).
In this model, a positive feedback between phosphorus concentra-
tion and phosphorus recycling from the sediment causes alternative
stable states (Fig. 4a). Under the strong noise regime that we impose, the
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Figure 3 | Potential early warning signals of the regime shift in the lake
trophic state for DCA (blue) and HDI (orange) time series. a, Interpolated
one-dimensional gradients for sediment diatom composition (derived from
Fig. 1a). b, Positive and negative residuals from a, with grey horizontal lines
showing zero values. c, Variance of b using s.d. d, Skewness of b. e, Lag 1
autocorrelation of b. (c–e, Plots were calculated using a 59-year (half time
series) sliding window through the period 1883–2001 and are plotted to the
right of the window.) The dashed vertical line denotes 2001.
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border between the basins of attraction of the two stable branches of the hysteresis
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autocorrelation (i), for the coarse-resolution record (f). The vertical dashed lines
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after removing a trend (red lines) using a Gaussian smoothing function and were
plotted to the right of the window. All y-axis values are dimensionless.
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dynamics over a range of parameter values are characterized by flick-
ering between the alternative basins of attraction (Fig. 4b, f). This flick-
ering results in bistability in the system before the system settles more
permanently into an alternative state. Variance rises in both the original
‘high-resolution’ time series (Fig. 4c) and in a sub-sampled ‘coarse-
resolution’ record (Fig. 4g). Skewness decreases to zero in both series
(Fig. 4d, h). Autocorrelation rises in the high-resolution time series
(Fig. 4e), until it drops in the last part of the record before the transition.
But autocorrelation declines to zero or even negative values over the
flickering region in the sub-sampled time series (Fig. 4i). Although
published reports on systems with small fluctuations around equili-
brium also show simultaneous increases in variance, autocorrelation
and skewness11, our results show that highly stochastic systems can
produce contrasting patterns. The observed rise in variance, together
with the simultaneous declines in autocorrelation and skewness, in
the Lake Erhai records is thus in line with the findings expected for a
flickering system sampled at relatively low time resolution.

Our findings have several implications for detecting transitions in
real world systems. First, in systems in which exogenous drivers result
in high levels of disturbance, flickering can be a more likely source of
early warning signals than critical slowing down. Second, flickering
will produce a rise in variance coupled to a decrease in skewness and
autocorrelation at low time resolutions. Third, flickering can start
before the stage at which the attractor of an alternative state becomes
strong enough to capture the system from the noisy regime of forcing.
Thus, a flickering signal in a modern system can be considered a direct
warning that the system has left the ‘safe operating space’16. Fourth, the
potential advantages and ease of finding flickering signals suggests that
every opportunity should be taken to study multi-decadal time series
of modern social–ecological systems, even if the available data are of
low resolution. Because monitored data do not always provide suffi-
ciently long timescales of observations, especially for ecological vari-
ables, proxies such as the ones derived from sediment studies could be
a useful resource in this respect25,26.
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